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SEPARATION SCIENCE AND TECHNOLOGY, 1 5 ( 3 ) ,  pp. 679-696, 1980 

A NEW CONTINUOUS FLOW REACTOR FOR SIMULTANEOUS 
REACTION AND SEPARATION 

B. K. Cho, R .  W. Carr and R. A r i s  
Department of Chemical Engineer ing and Materials Sc ience  

4 2 1  Washington Avenue S.E.  
Minneapol is ,  Minnesota 55455 

ABSTRACT 

The a c i d  c a t a l y s e d  h y d r o l y s i s  of methylformate h a s  been 
i n v e s t i g a t e d  i n  a cont inuous  f low a n n u l a r  r e a c t o r  packed w i t h  
a c t i v a t e d  c h a r c o a l ,  and equipped w i t h  a r o t a t i n g  feed  i n j e c t i o n  
p o r t .  Chromatographic s e p a r a t i o n  of t h e  p r o d u c t s ,  formic  a c i d  and 
methanol, e f f e c t i v e l y  suppressed  t h e  r e v e r s e  r e a c t i o n ,  caus ing  
convers ions  t o  b e  s i g n i f i c a n t l y  g r e a t e r  than  t h e  thermodynamic 
e q u i l i b r i u m  convers ions  t h a t  would have been obta ined  i n  t h e  
absence of s e p a r a t i o n .  Comparisons of numer ica l ly  s imula ted  
r e a c t o r  performance w i t h  exper imenta l  r e s u l t s  showed good 
agreement ,  a l though some d i f f e r e n c e s  occurred  as exper imenta t ion  
proceeded,  most probably due t o  d e a c t i v a t i o n  of t h e  a c t i v a t e d  
c h a r c o a l .  

INTRODUCTION 

It i s  w e l l  known t h a t  t h e  chromatographic s e p a r a t i o n  i n  

r e a c t i o n  chromatography can enhance t h e  n e t  forward p r o g r e s s  of 

r e a c t i o n  when t h e  chemical  r e a c t i o n  i s  of t h e  type  

aA % b B  + CC + . 
Chromatographic r e a c t o r s  have u s u a l l y  c o n s i s t e d  of a packed column 

c o n t a i n i n g  a combined c a t a l y s t - s o l i d  a d s o r b e n t ,  w i t h  t h e  r e a c t a n t  

being i n j e c t e d  as a p u l s e  i n t o  a cont inuous ly  f lowing c a r r i e r  

f l u i d  (1-10). 
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680 CHO, CARR, AND ARIS 

Mart in  (11) a p p e a r s  t o  have f i r s t  sugges ted  t h e  p o s s i b i l i t y  

t h a t  cont inuous  chromatography could b e  done i n  t h e  packed annular  

space between t h e  w a l l s  of two c o n c e n t r i c  c y l i n d e r s  by r o t a t i n g  

t h e  assembly. Giddings (12) l a t e r  d i s c u s s e d  t h e  f e a s i b i l i t y  of a 

cont inuous chromatographic  system of  t h i s  type .  Recent ly ,  i t  w a s  

demonstrated e x p e r i m e n t a l l y  t h a t  chromatography can b e  done on a 

cont inuous  b a s i s  i n  a number of d i f f e r e n t  c o n f i g u r a t i o n s .  A 

r o t a t i n g  annular  chromatograph (13-15); spaced ,  r o t a t i n g  d i s c s  

(16);  a r e c t a n g u l a r  s l a b  (17);  and c o u n t e r c u r r e n t  chromatography 

(18) have a l l  been used s u c c e s s f u l l y .  Recent ly ,  Viswanathan and 

A r i s  (19) explored  t h e  combinat ion of cont inuous  chromatography 

and r e a c t i o n  chromatography i n  a c o u n t e r c u r r e c t  moving bed r e a c t o r  

f o r  an  i r r e v e r s i b l e  r e a c t i o n  of t h e  Type A -+ 3 .  

Most s t u d i e s  w i t h  t h e  pulsed chromatographic  r e a c t o r  w e r e  

concerned w i t h  quick  e s t i m a t i o n  of k i n e t i c  parameters  r a t h e r  than  

w i t h  chemical r e a c t o r  development. To develop r e a c t i o n  chromatog- 

raphy toward p r a c t i c a l  a p p l i c a t i o n s ,  cont inuous  o p e r a t i o n  would b e  

most d e s i r a b l e .  

I n  t h i s  paper  w e  r e p o r t  t h e  combinat ion of r e a c t i o n  chroma- 

tography w i t h  cont inuous  chromatography i n  a r o t a t i n g  annular  type  

of a chromatographic  r e a c t o r .  For r e a c t i o n s  of t h e  type  

aA % bB + cC, s e p a r a t i o n  of t h e  p r o d u c t s  w i l l  s u p p r e s s  t h e  

backward r e a c t i o n  and may l e a d  t o  enhanced y i e l d s .  T h i s  would b e  

of advantage i n  cases where thermodynamic e q u i l i b r i u m  i s  

unfavorable .  The r e a c t o r  i s  a s t a t i o n a r y ,  packed c y l i n d r i c a l  

annulus  w i t h  a r o t a t i n g  f e e d  p o r t .  A s t u d y  of t h e  a c i d  c a t a l y z e d  

h y d r o l y s i s  of  methylformate 

w a s  conducted u s i n g  d i l u t e  h y d r o c h l o r i c  a c i d  as t h e  c a t a l y s t  and 

carr ier  f l u i d .  Also,  a mathemat ica l  model w a s  used t o  n u m e r i c a l l y  

s i m u l a t e  r e a c t o r  performance. 
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CONTINUOUS FLOW REACTOR 

EXPERIMENTAL 

681 

Reactor 

A c ross - sec t iona l  view of t h e  P l e x i g l a s  r e a c t o r  i s  shown i n  

Fig.  1. Since the  feed  p o r t  r o t a t e s  and t h e  annulus i s  s t a t i o n a r y ,  

t h e  e luen t  concent ra t ion  "peaks" t r a v e l  around the  annular o u t l e t ,  

lagging t h e  feed p o r t p o s i t i o n b y  a d i s t a n c e  t h a t  i s  p r imar i ly  a 

func t ion  of t h e i r  r e t e n t i o n  by t h e  s t a t i o n a r y  phase. D e t a i l s  of 

cons t ruc t ion  and experimental  procedures a r e  given i n  r e f .  (20) .  

1 FEED POSITION 
/ INDICATOR 

FILTER PAP€ 

FILTER PAPER 

SUPPORT I NG 

TEFLON SEAT 
O-RING 
OUTER CYLINDER 

' &ROTATING SHAFT 

INNER CYLINDER 

FILTER PAPER 

FLOW BAFFLE 

C A R R I E R  FLUID 
O-RING 

O-RING RESERVOIR 

TO MANOMETERS THERMOMETER- 

STATIONARY SHAFT 

REACTANT 

Figure  1 The r e a c t o r  assembly. 
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Pre l iminary  Experiments 

Adsorpt ion experiments  w e r e  c a r r i e d  o u t  us ing  a commercial, 

60-80 i,iesh, a c t i v a t e d  coconut c h a r c o a l ,  manufactured by F i s h e r  

S c i e n t i f i c  Company, as t h e  adsorbent .  S i n g l e - s o l u t e  i so therms 

were obta ined  f o r  methanol-water, f o r m i c  ac id-water ,  methylformate- 

w a t e r ,  and methanol-1N h y d r o c h l o r i c  a c i d  systems by t h e  s t a t i c  

method ( 2 1 ) .  The exper imenta l  d a t a  shown i n  F i g .  2 gave good f i t s  

t o  Freundl ich  i so therms.  The parameter  v a l u e s ,  ob ta ined  by t h e  

least s q u a r e s  method, f o r  t h e  F r e u n d l i c h  i so therm model 

m 
( 2 )  i n = Kici  , i = A ,  B, C i 

are 

= 3.48 x n o l e l g r - a d s o r b e n t ,  mA = 0.33 
KA 

Kg 

KC = 3.45 x mole/gr-adsorbent ,  mC = 0 .26  

J 
4 
0 

(3) 

0.1 I I , , , t l  , 1 I I L l l l l  I I , # , I  
0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10.0 

LL 
Ir 
3 FLUID PHASE CONCENTRATION, MOLEILITER 

F i g u r e  2 S i n g l e - s o l u t e  a d s o r p t i o n  i so therm on a c t i v a t e d  coconut 
c h a r c o a l .  Fresh  a d s o r b e n t ;  H C O O C H 3 - H 2 0 , 0  HCOOH-H20, 
A C H 3 0 H - H 2 0 ,  h CH30H-1N HC1.  Aged adsorbent ;  
O C H 3 0 H - H 2 0 ,  CH30H-lN HC1.  
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CONTINUOUS FLOW REACTOR 683 

The presence  of 1N h y d r o c h l o r i c  a c i d  proved t o  have n e g l i g i b l e  

e f f e c t  on t h e  a d s o r p t i o n  i so therms.  It w a s  observed t h a t ,  a f te r  

long  u s e  i n  t h e  1N H C 1  environment (approximately 100 h o u r s ) ,  t h e  

a d s o r p t i o n  c a p a c i t y  of c h a r c o a l  f o r  methanol decreased  as 

evidenced i n  F ig .  2 ,  p o s s i b l y  because of d e a c t i v a t i o n  o r  impur i ty  

contaminat ion.  The above parameter  v a l u e s  f o r  methanol, % and 

mg, are f o r  t h e  methanol a d s o r p t i o n  on aged c h a r c o a l  i n  1N H C 1 .  

Experimental  d a t a  f o r  m u l t i - s o l u t e  a d s o r p t i o n  were f i t t e d  t o  

t h e  Langmuir i so therm,  b u t  r e l i a b l e  parameter  v a l u e s  could n o t  b e  

obta ined .  This  may b e  due p a r t l y  t o  i n t e r a c t i o n s  between s o l u t e s  

i n  t h e  f l u i d  phase,  p o s s i b l y  hydrogen bonding, and p a r t l y  t o  t h e  

h i g h l y  heterogeneous n a t u r e  of t h e  a c t i v a t e d  c h a r c o a l  s u r f a c e .  

The same b a t c h  of adsorbent  as used i n  t h e  a d s o r p t i o n  i s o -  

therm measurement w a s  packed i n t o  t h e  annular  r e a c t o r  space  by a 

d r y  f r e e - f a l l i n g  technique  through a f u n n e l  r o t a t i n g  a t  1 rpm. 

The bed packing d e n s i t y  w a s  determined t o  b e  0.543 g r  c h a r c o a l / c c  

of bed,  and a void  f r a c t i o n  of 0.54. The degree  of u n i f o r m i t y  i n  

bed packing w a s  checked by measuring t h e  e l u t i o n  p r o f i l e  of a 

trace component ( i n  t h i s  case methanol) a t  s e v e r a l  d i f f e r e n t  f e e d  

p o s i t i o n s  around t h e  a n n u l a r  r e g i o n ,  w h i l e  keeping t h e  f e e d  p o r t  

s t a t i o n a r y .  The shapes  of c o n c e n t r a t i o n  peaks coming from d i f -  

f e r e n t  f e e d p o s i t i o n s  were i n  reasonable  agreement, i n d i c a t i n g  t h a t  

w h i l e  t h e  packing is n o t  s t r i c t l y  uniform, i t  i s  reasonably  good. 

The chemicals  used were Eastman Kodak's Spec t ro  grade  methyl- 

formate,  F i s h e r  S c i e n t i f i c ' s  C e r t i f i e d  A.C.S. g r a d e  anhydrous 

methyl  a l c o h o l ,  M a l l i n c k r o d t ' s  A n a l y t i c a l  g r a d e  aqueous formic  

a c i d ,  Hi-Pure Chemicals'  E l e c t r o n i c  grade  h y d r o c h l o r i c  a c i d ,  and 

Chippews Spr ings '  d i s t i l l e d  water. Samples were analyzed by g a s  

chromatography on a 6 mm O.D.x6  f t  g l a s s  column packed w i t h  

Porapak Q and opera ted  a t  13OOC. 

Procedures  

Reac tan t  and carrier f l u i d  f low was d r i v e n  by a p r e s s u r i z e d  

system connected t o  compressed a i r  c y l i n d e r s .  The range  of f low 
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684 CHO, CARR, AND ARIS 

r a t e s  of the  c a r r i e r  was 10-20 ml/min and t h a t  of t he  r e a c t a n t  was 

maintained a t  3/97 of t he  c a r r i e r  flow r a t e .  Flow rates were 

measured by Fischer  and Por t e r  rotameters.  The o v e r a l l  p ressure  

drop through the  system was ca. 300 mm Hg f o r  t he  c a r r i e r  flow and 

ca. 130 mm Hg f o r  t he  r e a c t a n t  flow. The r e a c t a n t  feed po r t  was 

ro t a t ed  a t  0.01-0.05 rad/min. The c a r r i e r  f l u i d  w a s  fed along t h e  

whole annular area except t he  reg ion  where t h e  r e a c t a n t  feed po r t  

was loca ted .  To minimize mixing between the  c a r r i e r  and the  

r eac t an t  before  they en tered  the  r e a c t o r  bed, pressures  a t  the  

r eac t an t  feed po r t  and the  c a r r i e r  f l u i d  r e se rvo i r  were kept 

approximately t h e  same. Product samples were taken from the  f i f t y  

sampling p o s i t i o n s  provided around the  annular a r ea  a t  t he  e x i t  of 

the  r e a c t o r ,  and two d i f f e r e n t  sampling schemes w e r e  used. In  one 

scheme, samples were taken a t  des i r ed  angular d i s t ances  from the  

r o t a t i n g  feed p o r t ,  which i s  e s s e n t i a l l y  a sampling method i n  a 

moving coord ina te  system whose o r i g i n  i s  f ixed  a t  t h e  r o t a t i n g  

feed po r t .  I n  t h e  o ther  scheme, samples w e r e  t aken  a t  a f ixed  

poin t ,  wi th  the  angular d i s t a n c e  between the  sampling po in t  and 

the  r o t a t i n g  feed p o r t  varying wi th  t i m e .  Both sampling schemes 

should g ive  the  same e l u t i o n  p r o f i l e  i f  t h e  r e a c t o r  bed packing is  

everywhere uniform. 

P R E D I C T I O N  OF REACTOR PERFORMANCE 

A mathematical model has  been developed t o  p r e d i c t  t he  

r eac to r  performance. I n  desc r ib ing  our present  r e a c t o r  system 

mathematically, i t  is  assumed t h a t  t h e  r e a c t o r  bed packing i s  

uniform and can be t r e a t e d  as a homogeneous continuum. Since t h e  

adsorbent p a r t i c l e  s i z e  is  very s m a l l  (60-80 mesh) and t h e  f l u i d  

flow ve loc i ty  i s  very  slow (ca. 1 . 0  cm/min), adsorp t ion  equ i l ib -  

rium between the  f l u i d  and t h e  s o l i d  phase can be assumed 

throughout t he  r e a c t o r ,  which opera tes  i so thermal ly .  The width of 

t he  annular space i s  s o  t h i n  compared t o  the  r ad ius  of two con- 

c e n t r i c  cy l inde r s  t h a t  R A R R can be assumed, where 

and R2 
R1 1 2  

a r e  the  r ad ius  of t h e  inner and t h e  ou te r  cy l inde r ,  
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CONTINUOUS FLOW REACTOR 685 

r e s p e c t i v e l y .  

t r a t i o n  i s  assumed t o  be uniform a c r o s s  t h e  r e a c t o r  bed. S i n c e  

t h e  f l u i d  phase i s  l i q u i d ,  i t  can b e  assumed t h a t  t h e  e f f e c t  of 

p r e s s u r e  drop a long  t h e  r e a c t o r  and d i s p e r s i v e  e f f e c t s  i n  t h e  

f l u i d  phase are n e g l i g i b l e .  

The d i s t r i b u t i o n  of f l u i d  v e l o c i t y  and concen- 

Material b a l a n c e s  f o r  each component 

over  t h e  r e a c t o r  g i v e  t h e  fo l lowing  model equat ions :  

aci a + 
EU - + w - { E C .  + p n . 1  = a.[H ] k(cA - c c / K  ) z az a+  1 ~1 B C  e 

( i  = A, B ,  C )  

a = -1 f o r  i = A i 

1 f o r  i = B ,  C 

The i n l e t  and boundary c o n d i t i o n s  are 

I n  Eq. (4)  t h e  s u r f a c e  c o n c e n t r a t i o n  n i s  r e l a t e d  t o  t h e  f l u i d  

phase c o n c e n t r a t i o n  c through t h e  Freundl ich  a d s o r p t i o n  i s o -  

t h e m  i n  Eq. ( 2 ) ,  and [H’] r e p r e s e n t s  t h e  hydrogen i o n  

c o n c e n t r a t i o n  i n  mole/&. 

i 

i 

Eqs. ( 4 )  through Eq. (7 )  were solved us ing  a f i n i t e  d i f -  

f e r e n c e  scheme based upon Lax’ method (22) ,  t h e  d e t a i l s  of which 

w i l l  b e  r e p o r t e d  elsewhere.  

EXPERIMENTAL RESULTS 

The upper l i m i t  of methylformate c o n c e n t r a t i o n  i n  t h e  feed 

stream w a s  l i m i t e d  by t h e  m i s c i b i l i t y  of methylformate w i t h  w a t e r ,  

which is 30 gr/100 g r  of H20 a t  2OoC (23). Consequent ly ,  t h e  

methylformate c o n c e n t r a t i o n  i n  t h e  feed  stream w a s  k e p t  below 

3.0 mole/&, which is w e l l  below t h e  s o l u b i l i t y  l i m i t .  

the r e a c t i o n  is s l i g h t l y  endothermic,  w i t h  a h e a t  of r e a c t i o n  of 

about  4.0 Kcalfmole ( 2 4 ) ,  t h e  rate of h e a t  a b s o r p t i o n  w a s  t o o  

s m a l l  t o  d i s t u r b  t h e  tempera ture  of t h e  r e a c t o r  bed. 

Although 
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686 CHO, CARR, AND ARIS 

A v i r t u a l  s t e a d y  s ta te  was reached a f t e r  one complete 

r e v o l u t i o n  of t h e  r e a c t o r ,  which cor responds  t o  about  seven hours  

of o p e r a t i o n  w i t h  w = 0.15 rad/min.  For one exper imenta l  r u n ,  it 

took approximately 24-30 hours  of cont inuous  o p e r a t i o n .  

It  has  a l r e a d y  been noted t h a t  t h e  bed packing w a s  n o t  

p e r f e c t l y  uniform. A s  a r e s u l t ,  t h e  e l u t i o n  p r o f i l e  ob ta ined  by 

t h e  r o t a t i n g  sampling scheme gave more scat ter  than  t h e  f i x e d -  

p o i n t  sampling scheme. Except where i n d i c a t e d ,  t h e  f ixed-poin t  

sampling scheme w a s  used.  The product  samples w e r e  t aken  through 

sampling h o l e s  a t  t h e  t o p  of t h e  r e a c t o r  us ing  a 10 ~ 9 ”  Hamilton 

microsyr inge .  A f t e r  an  exper imenta l  run  w a s  completed, t h e  

r e a c t o r  bed was washed o u t  w i t h  d i s t i l l e d  water u n t i l  no r e s i d u a l  

s o l u t e  peak w a s  d e t e c t e d  i n  t h e  e f f l u e n t  stream. 

The exper imenta l  c o n d i t i o n s  are g iven  i n  Table 1. I n  t h e  

numerical  s i m u l a t i o n ,  l i t e r a t u r e  v a l u e s  of t h e  r e a c t i o n  ra te  

c o n s t a n t  and t h e  r e a c t i o n  e q u i l i b r i u m  c o n s t a n t  (25) 

TABLE 1. Experimental  Condi t ions  

9 7 5 

Temp. , O C  2621 25+1 2551 2521 2 5 t 1  25+1 25?1 
u z ,  cm/min 1.04 1.04 1.04 1.04 1.04 1 .04  0.52 
w ,  rad/min 0.032 0.032 0.0151 0.0151 0.0151 0.0151 0.0151 
P r e s s u r e ,  mm Hg 

( C a r r i e r  feed  310 310 310 310 310 310 310 

(Reactor feed  127 125 127 127 127 127 127 

- 8 - - 6 - - 4 - 3 - F i g u r e  

tank)  

tank)  
Feed c o n d i t i o n  

(cAo, mole/ll) 3.0 0.32 3.0 3 .0  2.0 1 .5  3.0 
(cBo, mole / i )  0 2.33 0 0 0 0 0 
(q-0, m o l e / t )  0 1 .56 0 0 0 0 0 

Carrier f l u i d  1 N - H C 1  1N-HC1 1N-HC1 0.5N-HC1 1N-HC1 1N-HC1 1N-HC1 
Flow r a t e ,  c c /  
min 

( C a r r i e r  ) 20 20 20 20 20 20 20 
(React a n t  ) 0.62 0.62 0.62 0.62 0.62 0.62 0.62 

Sampling method F* R** F F F F F 
*F = f i x e d - p o i n t  sampling,  **R = r o t a t i n g  sampling. 
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CONTINUOUS FLOW REACTOR 

-1 k = 0.176 m i n  

Ke = 6.75 mole/R, 

and e x p e r i m e n t a l l y  measure s i n g l e - s o l u t e  a 

(3)  w e r e  used as i n p u t  parameters .  

; o r p t  

687 

In d a t a  i n  E q .  

The  e l u t i o n  p r o f i l e s  of the product  stream are p l o t t e d  i n  

F igs .  3-9 as a f u n c t i o n  of t h e  a n g u l a r  p o s i t i o n  a t  t h e  e x i t  of t h e  

r e a c t o r .  I n  Fig.  3 t h e  p r e d i c t i o n  by t h e  numer ica l  s i m u l a t i o n  

g i v e s  good agreement w i t h  exper imenta l  d a t a ,  F i g u r e  4 r e p o r t s  

d a t a  f o r  a feed  stream c o n s i s t i n g  of an e q u i l i b r i u m  m i x t u r e ,  and 

sampled by t h e  r o t a t i n g  sampling method. 

more scat ter  than t h o s e  of F ig .  3, which w e  a t t r i b u t e  t o  non- 

u n i f o r m i t y  of  bed packing.  T h i s  i s  n o t  a f a c t o r  i n  t h e  f ixed-  

p o i n t  sampling scheme. The d a t a  of  F i g .  4 are f i t  q u i t e  w e l l  t o  

t h e  s i m u l a t i o n  r e s u l t s ,  b o t h  w i t h  r e s p e c t  t o  peak shapes  and peak 

p o s i t i o n s .  

The d a t a  p o i n t s  e x h i b i t  

(L 
W 

-I 

W 
J 
0 
I 

t 
\ 

i 
2 
a 
a 
I- 

I- z 
W 
0 
Z 
0 
V 

I- z 
W 
3 
-I 
W 

F i g u r e  3 

0.3 

0. 

0. 

I I 
0 4 5  90 135 180 225 270 315 360 

ANGULAR DISTANCE, DEGREES 

Adjusted e l u t i o n  p r o f i l e s .  m e t h a n o 1 , O  formic  a c i d .  - 
numer ica l  s i m u l a t i o n .  See  Table  1 f o r  exper imenta l  
c o n d i t i o n s .  
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0.3 I_ 
0.2 - 

- 

0.1 - 

135 180 225 270 315 ? 0 45 90 
-I 
w 

ANGULAR DISTANCE, DEGREES 

F i g u r e  4 E l u t i o n  p r o f i l e s .  methanol ,  0 formic  a c i d .  
numer ica l  s imula t ion .  See Table  1 f o r  exper imenta l  
c o n d i t i o n s .  

F igure  5 shows t h e  e l u t i o n  p r o f i l e s  when t h e  r o t a t i o n  speed 

of t h e  feed  p o r t  w a s  reduced by one h a l f ,  w i t h  o t h e r  o p e r a t i n g  

c o n d i t i o n s  remaining t h e  same. The agreement between s i m u l a t i o n  

r e s u l t s  and exper imenta l  d a t a  are a g a i n  q u i t e  good except  f o r  

s l i g h t  s h i f t s  of peak p o s i t i o n s .  The s h a r p e r  peaks and t h e  

smaller e l u t i o n  a n g l e  i n  F i g .  5 than  t h o s e  i n  F i g .  3 are  

i n t u i t i v e l y  c o r r e c t ,  f o r  t h e  s lower r o t a t i o n  speed i m p l i e s  a 

l a r g e r  amount of r e a c t a n t  f e e d  per  u n i t  angle .  

F i g u r e  6 shows t h e  e l u t i o n  p r o f i l e s  when t h e  r e a c t i o n  ra te  

was reduced by a f a c t o r  of two, by reducing  t h e  c a t a l y s t  concen- 

t r a t i o n .  The peak shapes  of F i g .  6 are almost  t h e  same as t h o s e  

of Fig.  5 ,  except  t h e i r  h e i g h t s  are  s l i g h t l y  lower.  The peak 

p o s i t i o n s  are a l s o  a lmost  t h e  same, which means t h a t  t h e  reduced 

r e a c t i o n  ra te  is  s t i l l  f a s t  enough t o  provide  ample t i m e  f o r  

r e a c t i o n  as w e l l  as good s e p a r a t i o n .  It i s  a n t i c i p a t e d  t h a t  a t  

s u f f i c i e n t l y  slow ra tes  t h e r e  would b e  more peak over lap .  
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CONTINUOUS FLOW REACTOR 

0.9 , 

Angular Position, degrees 

Figure  5 E lu t ion  p r o f i l e s .  methanol, 0 formic ac id .  
numerical  s imula t ion .  See Table 1 f o r  experimental  
condi t ions .  

689 

The r e a c t o r  bed w a s  l e f t  unwashed f o r  about one month between 

t h e  d a t a  taken i n  F igs .  6 and 7 .  It w a s  then washed o u t ,  and Fig.  

7 shows t h e  r e s u l t s  i n  which the  feed  concent ra t ion  w a s  reduced t o  

2 mole/L. The methanol peak is f i t  very  w e l l ,  bu t  t h e  formic ac id  

peak r e v e a l s  l a r g e  d i sc repanc ie s  wi th  the  model s imula t ion  

r e s u l t s .  This may be due to :  

a )  inadequate temperature c o n t r o l  of t h e  system, 

b) improper washing of t h e  r e a c t o r  bed between exper i -  

mental  runs ,  

c )  deac t iva t ion  o r  impurity contamination of t h e  

adsorp t ion  s i t e s  f o r  formic ac id .  

However, causes a )  and b) may be  dismissed because t h e  temperature 
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Angular Position, degrees 

F i g u r e  6 E l u t i o n  p r o f i l e s .  0 methanol ,  A f o r m i c  a c i d .  - 
numer ica l  s i m u l a t i o n .  See  Table  1 f o r  e x p e r i m e n t a l  
c o n d i t i o n s .  

Angular Position, degrees 

E l u t i o n  p r o f i l e s .  0 methanol ,  A formic  a c i d .  - 
numer ica l  s i m u l a t i o n .  See Table 1 f o r  e x p e r i m e n t a l  
cond it i on s . 

F i g u r e  7 
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CONTINUOUS FLOW REACTOR 69 1 

c o n t r o l  and t h e  washing p r o c e s s  were always c o n s i s t e n t .  There- 

f o r e ,  i t  can  be  concluded t h a t  t h e  a d s o r p t i o n  si tes f o r  formic  

a c i d  were d e a c t i v a t e d  o r  i r r e v e r s i b l y  contaminated w i t h  i m p u r i t i e s ,  

most probably  due  t o  t h e  long c o n t a c t  w i t h  r e a c t i o n  mixture .  The 

d a t a  i n  F i g .  8 were o b t a i n e d  w i t h  a feed  c o n c e n t r a t i o n  of 1.5 

mole/R, w i t h  s p e c i a l  a t t e n t i o n  g i v e n  t o  t h e  tempera ture  and t h e  

pre-washing of t h e  bed.  The r e s u l t s  gave good agreement f o r  t h e  

methanol  peak,  b u t  t h e  d i s c r e p a n c i e s  i n  t h e  formic  a c i d  p r o f i l e  

s t i l l  remained, t h u s  r e i n f o r m c i n g  t h e  d e a c t i v a t i o n  h y p o t h e s i s .  

F i n a l l y ,  bo th  t h e  r o t a t i o n  speed of t h e  f e e d  p o r t  and t h e  

f l u i d  f low v e l o c i t y  were reduced t o  h a l f  of t h o s e  of F i g .  3 .  From 

t h e  model, E q .  

on t h e  e l u t i o n  p r o f i l e s  as i f  t h e  r e a c t i o n  rate w e r e  doubled.  

From r e s u l t s  i n  F igs .  3 and 6 ,  i t  w a s  found t h a t  t h e  change of t h e  

r e a c t i o n  r a t e  i n  t h i s  r a n g e  h a s  l i t t l e  e f f e c t  on t h e  e l u t i o n  pro- 

f i l e .  T h e r e f o r e ,  w e  e x p e c t  t h e  e l u t i o n  p r o f i l e s ,  shown i n  F i g .  9 ,  

b e  v e r y  s imi l a r  t o  t h o s e  of F i g .  3 .  The exper imenta l  d a t a  a g a i n  

show e x c e l l e n t  agreement f o r  t h e  methanol  peak, b u t  t h e  formic  

a c i d  peak h a s  the same d i s c r e p a n c i e s  as b e f o r e .  

( 4 ) ,  w e  e x p e c t  t h a t  t h i s  w i l l  have t h e  same e f f e c t  

W ANGULAR DISTANCE, DEGREES 

F i g u r e  8 E l u t i o n  p r o f i l e s .  methanol , ( )  formic  a c i d .  - 
numer ica l  s i m u l a t i o n .  See Table  1 f o r  e x p e r i m e n t a l  
condi. t i o n s  . 
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692 CHO, CARR, AND ARIS 

n c  

0.4 

0.3 
I .Y 0 

0. I 

0 45 90 135 180 225 270 315 ? 

ANGULAR DISTANCE, DEGREES 

Figure  9 E lu t ion  p r o f i l e s .  methano1,O formic ac id .  - 
numerical s imul t iona .  See Table 1 f o r  experimental 
cond i t ions  . 

It can be concluded t h a t  t h e  a c t i v a t e d  coconut charcoa l  under 

t h e  H C 1  environment d e a c t i v a t e s  slowly, f i r s t  on adsorp t ion  s i t e s  

f o r  methanol, and then  on those  f o r  a s t ronge r  adsorba te  l i k e  

formic ac id  and methylformate. For long t e r m  use  of t h i s  con- 

t inuous  chromatographic r e a c t o r ,  t h e r e f o r e ,  t h i s  deac t iva t ion  

process should be  thoroughly inves t iga t ed .  

Experimental and numerical  s imula t ion  r e s u l t s  on t h e  o v e r a l l  

conversion l e v e l  a r e  summarized i n  Table 2. 

The d i f f e r e n c e s  revea led  i n  Table 2 between experimental  and 

numerical r e s u l t s  are due t o  t h e  f a c t  t h a t  methylformate concen- 

t r a t i o n s  below 0.002 mole/!, (120 ppm) could not  be e f f e c t i v e l y  

de tec ted  by t h e  GC a n a l y s i s  used i n  t h i s  study. 

CONCLUSIONS 

A continuous annular  chromatographic r e a c t o r  w a s  used f o r  t h e  

aqueous, ac id  ca ta lyzed  hydro lys i s  of methylformate. The r e a c t i o n  

products,  methanol and formic a c i d ,  gave reasonably w e l l  def ined  
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CONTINUOUS FLOW REACTOR 693 

TABLE 2 .  Degree of O v e r a l l  Conversion 

F i g u r e  

3 
4 
5 
6 
7 
8 
9 

Thermodynamic 
Conversion L i m i t  

75.40% 
0.0 

75 .44  
75.44 
81.08 
84.57 
75.44 

Simula t ion  
R e s u l t s  

98.85% 
98.76 
98.99 
96.93 
99.34 
99.47 
98.84 

Experimental  
R e s u l t s  

100 * 0% 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 

chromatographic peaks. 

i n d i c a t i n g  t h a t  t h e  r e a c t i o n  went v i r t u a l l y  t o  completion. 

No r e a c t a n t  w a s  d e t e c t e d  i n  t h e  e f f l u e n t ,  

The a d s o r b e n t ,  a c t i v a t e d  coconut c h a r c o a l ,  appeared t o  deac- 

t i v a t e  a f t e r  long u s e  i n  t h e  h y d r o c h l o r i c  a c i d  environment. The 

s i g n s  of d e a c t i v a t i o n  f o r  a d s o r p t i o n  appeared f i r s t  f o r  methanol ,  

which i s  t h e  weakest a d s o r b a t e ,  and then  f o r  formic a c i d .  

A s imple  mathemat ica l  model of t h i s  r e a c t o r  w a s  developed 

assuming i s o t h e r m a l  and i d e a l  chromatographic  c o n d i t i o n s ,  where 

e f f e c t s  of d i s p e r s i o n  and nonequi l ibr ium a d s o r p t i o n  were presumed 

n e g l i g i b l e .  This  i d e a l  chromatographic  model w a s  s imulated 

numer ica l ly ,  and proved t o  b e  capable  of g i v i n g  e x c e l l e n t  pre- 

d i c t i o n  of exper imenta l  r e s u l t s .  

The c o m p e t i t i v e  multicomponent a d s o r p t i o n  process  of t h i s  

r e a c t i o n  mixture  i s  n o t  completely understood.  I n  t h e  numer ica l  

s i m u l a t i o n ,  t h e  Freundl ich  a d s o r p t i o n  i so therm w a s  used,  i n  which 

c o m p e t i t i v e  a d s o r p t i o n  w a s  n o t  cons idered .  Even t h e s e  s i n g l e -  

s o l u t e  a d s o r p t i o n  i’sotherm d a t a  were s u f f i c i e n t  t o  o b t a i n  a good 

p r e d i c t i o n  of t h e  exper imenta l  r e s u l t s .  This  seems t o  b e  due t o  

t h e  q u i c k  d isappearance  of t h e  h i g h  c o n c e n t r a t i o n  of methylformate 

a s h o r t  d i s t a n c e  from t h e  r e a c t o r  i n l e t ,  and almost  no  c o m p e t i t i v e  

a d s o r p t i o n  between methanol  and formic  a c i d .  

It i s  e v i d e n t  t h a t  t h i s  t y p e  of cont inuous  chromatographic  

r e a c t o r  can  b e  a p p l i e d  t o  r e a c t i o n s  w i t h  h i g h l y  unfavorable  equi-  

l i b r i u m  c o n d i t i o n s ,  though minor improvements i n  t h e  a p p a r a t u s  

remain t o  be made. 
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NOMENCLATURE 

A 

B 

C 

C 

k 

K 

Ke 
m 

n 

R 

R1 

R2 
U 

2 

methylformate 

m e  thano 1 

f l u i d  phase concent ra t ion ,  mole/J. 

formic ac id  

forward r e a c t i o n  rate cons t an t ,  min 

adsorption equi l ibr ium cons tan t ,  mole/gr of adsorbent 

r eac t ion  equi l ibr ium cons tan t ,  mole/ll 

exponent ia l  f a c t o r  i n  the  Freundlich adsorp t ion  isotherm, 

ni = Kici 

s o l i d  su r face  concent ra t ion ,  molelgr of adsorbent 

mean va lue  of t he  r e a c t o r  r a d i u s ,  (R1 + R 2 ) / 2  

r ad ius  of t h e  inner  cy l inde r ,  cm 

rad ius  of t he  ou te r  cy l inde r ,  c m  

flow v e l o c i t y  of the  f l u i d  phase, cm/min 

a x i a l  d i s t a n c e  along t h e  r e a c t o r ,  cm 

-1 

m i 

Greek Symbols 

E void f r a c t i o n  of t h e  r e a c t o r  bed 

p B  r e a c t o r  bed dens i ty ,  g r  of adsorbent lcc  of bed 

4 angular d i s t ance ,  r ad ian  

@ angular width of the  r e a c t a n t  feed p o r t ,  0.061~ 

w angular v e l o c i t y  of r o t a t i o n  of t h e  feed p o r t ,  radlmin 

Subscr ip ts  

A methylformate 

B methanol 

C formic ac id  

i component A, B o r  C 

o i n l e t  feed condi t ion  

z a x i a l  component 
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